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NOVEL THREE-DIMENSIONAL VERTICAL INTERCONNECT

TECHNOLOGY FOR MICROWAVE AND RF APPLICATIONS

Kavita Goverdhanam _,Rainee N. Simons 2, and Linda EB. Katehi t

_Radiation Laboratory, EECS Department, University of Michigan,
Ann Arbor, Michigan 48109-2122
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Abstract--ln this paper, novel 3D interconnects suit-

able for applications in microwave and RF integrated
circuit technology have been presented. The intercon-

nect fabrication process and design details are

presented. In addition, measured and numerically mod-
eled results of the performance of the interconnects have

been shown. The results indicate that the proposed tech-

nology has tremendous potential applications in

integrated circuit technology.

I. INTRODUCTION

Recently, Microwave and RF integrated circuits (ICs)

based on Silicon/Silicon germanium device technology

have emerged as a viable alternative to ICs based on III-V

semiconductor device technologies for wireless applica-

tions. These applications have experienced an exponential

growth during the past few years. Current state-of-the-art
digital ICs are also based on silicon technology and have

the potential to be mono-lithically integrated with the above

analogue ICs. Therefore, it is apparent that future genera-

tion of silicon analog circuits would have integrated digi-
tal control functions to enable them to make intelligent

decisions. These advanced silicon mixed signal ICs would

require efficient interconnects to allow combining differ-
ent transmission media, such as, Coplanar Stripline (CPS)

and Coplanar Waveguide (CPW) for maximum design flex-

ibility. In addition, they are useful for enhancing packing

density in the vertical direction as in small hand held com-
munication devices. The interconnects have to be small

in size for low parasitic coupling capacitances, and simple

to fabricate for high yield and low manufacturing cost.

In this paper, we present several new design concepts

for three-dimensional (3D) interconnects on a high resis-

tivity (HR) silicon (er2 = I 1.7) wafer. The 3D interconnects
constitute very small sections of CPS at two levels con-

nected by metallized vias and separated by a thin layer of

spin-on-glass (SOG). CPS has the advantages of eliminat-

ing backside processing due to it's uniplanar construction,

and greatly simplifying vertical integration by the use of
metallized vias. In addition, CPS being a slot type of trans-

mission line allows easy integration of other transmission

media, such as, slotline, CPW with finite width ground

planes and micro-CPS [ 1] for greater design flexibility. The
SOG has the advantage of low dielectric constant

(e_ = 3.1) and hence low parasitic coupling capacitance.
In addition, the SOG also planarizes the circuit and this

facilitates vertical integration 11]. The HR silicon wafer

(p > 3000_-cm) has the advantage of lowering the signal

attenuation in addition to improving the isolation between

adjacent circuits.
In the following sections, first, the fabrication process

of vertical interconnects is presented. Next, design consid-
erations for the CPS vertical interconnects treated here are

presented. The interconnects that are presented here are:

CPS vertically interconnected overpass with a crossover, a

CPS vertical interconnect with !80 ° phase shift and a CPW

vertical interconnect with 180 ° phase shift. Last, in the sec-
tion on results and discussion, first, the measured loss for

CPS lines on HR Silicon is presented. Second, the com-

puted results showing the performance of the CPS vertically

interconnected overpass with a crossover is presented. The
Finite Difference Time Domain (FDTD) [2] technique has

been used to compute the performance of the CPS verti-

cally interconnected overpass with a crossover. Finally, the

measured phase characteristics of the CPS and CPW inter-

connects with 180 ° phase shift are presented. The experi-

mental work for the purpose of demonstrating the low loss
feature of the interconnects was performed using
RT/duroid. The fabrication and characterization of inter-

connects with SOG-on-HR silicon are currently in progress.

It is interesting to note that the measured and FDTD simu-
lated results indicate that the interconnects presented here

exhibit very good performance over a broad range of

frequencies.

II. INTERCONNECT FABRICATION

To begin the fabrication process, the lower strip con-

ductor of thickness tj = 0.8 lam is fabricated on the HR
Silicon substrate by a lift-off process [3]. Next, the dielec-

tric spacer layer is built-up to the required thickness by

multiple spin-coats. Accuglass 512 SOG [4] is used as the

dielectric spacer layer. The thickness h 1of the Accuglass
512 SOG used here is 2.0 lam. Lastly, the upper strip con-

ductor of thickness t2 = 2.0/am is fabricated using the lift-
off process once again. Gold metallization is used for the
conductors.

III. DESIGN CONSIDERATIONS

(a) CPS vertically interconnected overpass with crossover:

A CPS vertically interconnected overpass with a cross-
over on a HR silicon wafer of thickness h_ = 400 lain is
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showninFigureI. Inthisinterconnect,theCPSstripwidth
W_ = W, = W and the separations S_ = S, = S are chosen

such that the characteristics impedance Z_c_,s ' is 50fL Thc

thickness of the SOG layer is h_. The vertical interconnec-
tion between the l]rst and the second level CPS conductors

are provided by a pair of circular metallized vias. Each via

in a pair is symmetrically located on the strip conductor and

has a diameter d. A via pair is design as a small section of
a vertical balanced transmission line with characteristic

impedance Z ,_,,= 50f2. The Z_,_ is related to the diam-

eter d, separation betl3een vias in a pair S4 and the dielec-

tric constant of the medium surrounding the via er_through

the cxprcssion, Z,,_,,_,,= (60/sqrt(Ert))cosh _(N), where

N = 0.5l(2SJd) _-- 2]. The probe pad at the input and output

tor the characterization with microwave wafer probes is
typically about 100 tam × 100/am in size.

(b) CPS Vertical Interconnect with 180° phase shill:

A CPS 180 ° phase shifter with vertically interconnected

twisted overpass is shown in Figure 2. In this phase shifter,
the CPS strip width W and separation S are chosen such

that the characteristic impedance Z,_c._,s_is 50_. The via
diameter d is chosen to be the same as in Figure 1.

(c) CPW Vertical Interconnect with 180° phase shift:

A CPW 180 ° Phase shifter with vertically interconnected

U-shaped overpass is shown in Figure 3. In this phase

shifter, the CPW center strip conductor and slot widths

S and W are chosen such that the characteristic impedance

Z c_,w,is 5()fL The via diameter is chosen to be the same as

in Figure I.

IV. RESULTS AND DISCUSSION

(a) Measured Loss of CPS on HR Silicon:

In order to estimate the efficiency of the interconnects,

the loss per unit length for 50f2 CPS is measured tor a

range of CPS test structures with W ranging from

26 to 133 lam and S ranging from 2 to 10 _m. This range

presents typical dimensions encountered in practical cir-

cuits. In Figure 4, the measured loss is presented as a func-

tion of W and frequency. As an example, for a CPS with

W = 54 lam and S = 4 lain, the meas-ured loss is of the

order of 0.46 dB/mm. The CPS crossover in Figure 1 has a

length of about 328 lam between the via pairs and hence
the loss is estimated to be about 0.15 dB at 20 GHz. How-

ever, instead of choosing such snmll dimension, ifS is cho-

sen to be larger, say I 0 _m, the corresponding loss lor a 50_

line reduces to about 0.25 dB/mm, roughly reducing the
total loss of the CPS crossover to about 0.075 dB at 20 GHz.

(b) CPS vertically interconnected overpass with crossover:
in order to study the performance of this interconnect,

the scattering parameters (S-parameters) were computed

using the FDTD scheme and they are shown in Figure 5.

The computed S-parameters for the overpass alone indi-

cate that the insertion loss, (S.,j) is negligible and that the

return loss (S_) is about -28 dB. The computed
S-parameters tbr the overpass with a crossover shows that

the insertion loss is still very small. However, S_ has in-
creased from -28 dB to-12 dB. This increase in S_ can be
offset by providing a step compensation as shown in

Figure 1. Simulations with the step compensation are in

progress. Computed S,_ shows that the coupling between
the overpass and the crossover is less than --40 dB.

(c) CPS and CPW vertical interconnects with 180 °

Phase Shift:

The measured phase characteristics for these circuits are

shown in Figures 6 and 7. In these figures, the phase shift

of the interconnect is compared with the phase of an equiva-

lent length of through-line. From the figures, it is observed

that the phase shift of the interconnect is close to 180 ° over

a very broad range of frequencies. The excess loss of the
interconnect is close to 0. I dB. FDTD simulations of the

phase shifters are in progress.

V. CONCLUSION

A new 3D interconnect technology suitable for applica-

tions in microwave and RF integrated circuits has been

proposed. Small sections of Coplanar Striplines connected

by metallized vias and separated by a thin layer of spin-

on-glass have been used to realize a variety of broadband

high performance circuits. This technology yields small

sized interconnects which are simple to fabricate. As

examples, the CPS vertically interconnected overpass with

a crossover, and 180° CPS and CPW phase shifters have
been presented. The results obtained indicate the suitabil-

ity of the proposed approach in facilitating 3D integration.
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1.6 B

:w=s,w=

t

Zo(cPS) = 50 _)

1 o2

( \ W/(S+2W) = 0.482

E 1.0 \\ Conductor thickness = 2 pm

\\ High resistivity silicon wafer:
0.8 \\ p > 3000 _-cm

C \_7_ Thickness = 400 tim

o, 0.6 \\ _'=_IR,,,-_ Frequency,

GHz

0.2

o.o I I I I I I
20 40 60 80 100 120 140

Strip width W, pm
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